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Derivation of energy lower bound models for translation- 
invariant many-f ermion systems 

R J M Carr 
Department of Mathematics, Bedford College, University of London, London NW1 
4NS. UK 

Received 30 August 1977 

Abstract. A derivation of the SHRIMP energy lower bound model for translation- 
invariant many-fermion systems is given. Previous models are obtained as special cases. 

1. Introduction 

A sequence of energy lower bound models for translation-invariant many-fermion 
systems: HIP, SHIP, RIP and SHRIMP, has been introduced (Carr and Post 1968, 1971, 
1977). As presented the derivations of later models in this sequence depended on the 
derivation of previous ones. The result is that the published derivation of the SHRIMP 
model is obscure, Some readers have doubted the validity of the derivation of the HIP 

and SHIP models (Balbutsev 1976 and others by private communication). A direct 
detailed derivation of the SHRIMP model follows which includes the superseded 
models as special cases. 

2. Derivation of lower-bound models 

We consider a system of N fermions with pair interaction in three dimensions. The 
Hamiltonian is 

where the ith particle has the position vector ri and mass mi = m. 
Let us consider the class of normalised translation-invariant trial functions 

'P(rl ,  r2, . . . , r N )  for the problem obeying the usual boundary conditions of quantum 
mechanics. Since we have a fermion system we further restrict this class to those 
functions which are antisymmetric with respect to the interchange of any pair of 
particles 1 , 2 , .  . . , N. We denote this antisymmetry by writing 'P(rl, r 2 , .  . . , rh;) for 
any member of this sub-class which we label class L. The ground-state energy Eo for 
the system is given by 

Eo = min ('P, HV) 

the minimisation being with respect to all functions of class L. We are insisting on 
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translation invariance, therefore the variables rl, r 2 , .  . . , rN are not independent. 
Throughout this section we have only 3N-3 independent variables. Let the ground 
state of H be q O ( r l ,  r2, . . . , rN)E L, then 

Eo = W O ,  H*o). 
We express Eo as the expectation value of a sum of N new Hamiltonians Hi;  thus 

where 

H i = - - A r i +  A2 N (--Arj+-V(lrj-ri l)).  h2 N 
2mi i=1 2mj 2 

i # i  

That is we ‘pick out’ each of the particles 1 ,2 ,  . . . , N in turn. 

depends on the masses of the particles, namely 
Take a typical term (Po, Hi*o) in the expression ( 1 )  and consider that part which 

(*o, ( - r A r i -  h2 1 -Arj)*o). h2 mi j=12mi 
j # i  

Exploiting the antisymmetry of Qo with respect to the interchange of any pair of 
particles 1, 2 , .  . . , N this may be written 

Thus if we increase mi at the same time decreasing the mj so as to keep ( l / m i ) +  
( N  - l ) / m j  constant we have the relation 

( 9 0 9  H i * o ) m i > m  = (Yo, H i * o ) m , = m *  (2 ) 
We introduce relative coordinates p l ,  p2, . . . , pN as follows. ‘The article masses 

are absorbed by a change of scale. Let r: = m1/2rj, j f i ;  and rl = mi ri. The trans- 
formation is 

1 E  

j # i  

centre-of-mass coordinate, and 

j = 1 , 2 ,  , , . , N ;  j # i. M is the total mass, M = mi + ( N  - l )mj .  Let pi’ = M1l2pi  and 
p: = m,?/’pj, j # i. Then from ( 2 )  we have 

(To, Hi*o) 3 (90, Hf 90) (4) 
where 
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It should be noted that pi  is the centre-of-mass coordinate and is orthogonal to all the 
pi, j # i. Initially we took 'Po to be translation invariant. 'PO can be expressed solely in 
terms of the pi, j # i, when mi, mj # m. The only term in H: which contains p i  is the 
kinetic energy term for the centre of mass. Thus from (4) for any mi 3 m, with the mj 
suitably adjusted, we have 

where 
1 / 2  h2 h2 N N  

H Y = C - - A p i - C C  - V p j * V p k + - l  I((-) p j ) .  
j = l  2mj j c k = l  mi +mj 2 j = 1  mi 
j # i  j ,  k # i  j # i  

From (4) and (5) we have 

('PO, HiqO) = (90, HWO) 

(TO, ~ ' 2 0 ) m p m  = ('PO, H'i'*o)mt=m. 

(7) 

(8) 

thus (2) becomes 

Now let mi +CO on the left-hand side of equation (8) retaining the function 'PO and 
such that ( l / m i ) + ( N -  l ) / m j  remains constant. From (3a)  and (3b) and adjacent 
relations pi -* ri and pi -* rj - ri, j # i. But ri is the centre-of-mass coordinate of an 
infinitely massive system and therefore represents a fixed point. To emphasise this let 
ri = ai (constant). We introduce orthogonal coordinates =pi +ai = rj, j # i. In the 
limit mj + m(N - 1)/N and ( 8 )  becomes 

We have from (6), (7) and (9) 

where 
N N h2 N N 

%(ai)= 1 ( - ~ ~ A r j + - V ( l r j - u i l ) ) =  1 hj(ai) 
i=  1 2 i= 1 , -  

j # i  j # i  

Applying (10) to each term in (1) we replace ('PO, Hi'Po) by ('PO, Xi(Ui)'Po), 
i = 1,2,  . . . , N, which gives 
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when U # b. In particular 

Let hj (0 )  = hi. We may then write 

since 'Po is antisymmetric in r l ,  r2,  . . . , f N .  Thus 

where 

N-1  N ti2 N-1 
H s = -  1 hi = 1 ( - -Ar i  +- 2 V(r i ) )  

N i= l  i= l  2m 

and 

N h2 N 
h.  = -- -Ari +y V(r i ) .  ' N - 1 2 m  

'Po will not in general be an eigenstate of H,. We minimise with respect to 
normalised functions obeying the usual boundary conditions of quantum mechanics 
and antisymmetric with respect to the interchange of any pair of particles 1 ,2 ,  . . . , N. 
Equation (1 1) becomes an inequality 

Eo 3 (Qs, H S Q J  (12) 

where Qs is the lowest eigenstate of H,  subject to the above constraints?, an 
antisymmetrised product (Slater determinant) formed from the first N eigenstates of 
hi. Let hi&(ri) = en&(ri), we take to be normalised to unity. The inequality (12) 
becomes 

We have an N-particle shell model retaining antisymmetry in all N particles, which we 
call the SHRIMP (symmetrised heavy reduced independent many particle) model. 

Another lower-bound shell model retaining antisymmetry in only N - 1 particles 
may be obtained as follows. From (l), ( 2 )  and (10) we have that 

where Xi = Ri(0). We minimise the expectation value of RI with respect to functions 
of class M defined as follows. Class M consists of those functions which satisfy the 
conditions of class L except that the restriction of antisymmetry with respect to the 
interchange of particle 1 with any of the particles 2 , 3 ,  . . . , N is dropped ( L  c M ) .  
Thus 

EO 3 (QR(r27 . * 3 rN) ,  %91@R(r2, . 7 r N ) ) =  8 

+ W e  assume such an eigenstate exists. 
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where (DR is the ground state of XI in class M, an antisymmetrised product formed 
from the first N - 1 eigenstates of hi giving a lower bound 

$ = E o + E 1 + .  . ,+ehr-2. 

We have a shell system of N - 1 independent particles interacting with a fixed centre 
of force which we call the RIP (reduced independent particle) model. 

Lower-bound models were originally obtained by the procedure of letting mi + CO 

keeping the mi = m (constant) (see Carr and Post 1968, 1971). The relation (10) is 
then an inequality 

('PO, Hi'Po)> lim ('Po, H W 0 )  
mi+m 

= (90, Xi(ai)'Po) = ('PO, XiqO) 

giving lower-bound shell models for which 

h2 N hi = --Ari +- V ( r i ) .  
2m 2 

We call the model corresponding to the SHRIMP model when the mi are kept constant 
in the limiting procedure the SHIP (symmetrised heavy independent particle) model 
and that corresponding to the RIP model the HIP (heavy indeoendent particle) model. 

3. Conclusion 

Comparing the RIP with the SHRIMP model we see that the RIP model has the same 
energy levels apart from a factor N / ( N  - 1) but one less particle. Thus S > $ always. 
However, having one less particle gives the RIP model an advantage in the discussion 
of angular momenta. When constructing the allowed total angular momentum values 
there is one less angular momentum vector in the sum which leads to a restricted set of 
values (Carr and Post 197 1). 

For the HIP and SHIP models hi has no factor N / ( N  - 1) in the kinetic energy which 
leads to weaker lower bounds compared with RIP and SHRIMP respectively. Thus HIP 
and SHIP are superseded. 
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