Derivation of energy lower bound models for translation-invariant many-fermion systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 11291
(http://iopscience.iop.org/0305-4470/11/2/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:19

Please note that terms and conditions apply.

Derivation of energy lower bound models for translationinvariant many-fermion systems

R J M Carr
Department of Mathematics, Bedford College, University of London, London NW1 4NS, UK

Received 30 August 1977

Abstract

A derivation of the SHRIMP energy lower bound model for translationinvariant many-fermion systems is given. Previous models are obtained as special cases.

1. Introduction

A sequence of energy lower bound models for translation-invariant many-fermion systems: HIP, SHIP, RIP and sHRIMP, has been introduced (Carr and Post 1968, 1971, 1977). As presented the derivations of later models in this sequence depended on the derivation of previous ones. The result is that the published derivation of the shrimp model is obscure. Some readers have doubted the validity of the derivation of the hIP and ship models (Balbutsev 1976 and others by private communication). A direct detailed derivation of the shrimp model follows which includes the superseded models as special cases.

2. Derivation of lower-bound models

We consider a system of N fermions with pair interaction in three dimensions. The Hamiltonian is

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \Delta \boldsymbol{r}_{i}+\sum_{i<j=1}^{N} \sum_{i} V\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{\boldsymbol{i}}\right|\right)
$$

where the i th particle has the position vector \boldsymbol{r}_{i} and mass $m_{i}=m$.
Let us consider the class of normalised translation-invariant trial functions $\Psi\left(r_{1}, r_{2}, \ldots, r_{N}\right)$ for the problem obeying the usual boundary conditions of quantum mechanics. Since we have a fermion system we further restrict this class to those functions which are antisymmetric with respect to the interchange of any pair of particles $1,2, \ldots, N$. We denote this antisymmetry by writing $\Psi\left(\overline{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{\boldsymbol{N}}}\right)$ for any member of this sub-class which we label class L. The ground-state energy E_{0} for the system is given by

$$
E_{0}=\min (\Psi, H \Psi)
$$

the minimisation being with respect to all functions of class L. We are insisting on
translation invariance, therefore the variables $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{N}$ are not independent. Throughout this section we have only $3 N-3$ independent variables. Let the ground state of H be $\Psi_{0}\left(\overline{r_{1}, r_{2}, \ldots, r_{N}}\right) \in L$, then

$$
E_{0}=\left(\Psi_{0}, H \Psi_{0}\right)
$$

We express E_{0} as the expectation value of a sum of N new Hamiltonians H_{i}; thus

$$
\begin{equation*}
E_{0}=\frac{1}{N}\left(\Psi_{0},\left(\sum_{i=1}^{N} H_{i}\right) \Psi_{0}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(\Psi_{0}, H_{i} \Psi_{0}\right) \tag{1}
\end{equation*}
$$

where

$$
H_{i}=-\frac{\hbar^{2}}{2 m_{i}} \Delta \boldsymbol{r}_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{N}\left(-\frac{\hbar^{2}}{2 m_{j}} \Delta \boldsymbol{r}_{i}+\frac{N}{2} V\left(\left|\boldsymbol{r}_{j}-\boldsymbol{r}_{i}\right|\right)\right) .
$$

That is we 'pick out' each of the particles $1,2, \ldots, N$ in turn.
Take a typical term ($\Psi_{0}, H_{i} \Psi_{0}$) in the expression (1) and consider that part which depends on the masses of the particles, namely

$$
\left(\Psi_{0},\left(-\frac{\hbar^{2}}{2 m_{i}} \Delta \boldsymbol{r}_{\boldsymbol{i}}-\sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{\hbar^{2}}{2 m_{j}} \Delta \boldsymbol{r}_{i}\right) \Psi_{0}\right) .
$$

Exploiting the antisymmetry of Ψ_{0} with respect to the interchange of any pair of particles $1,2, \ldots, N$ this may be written

$$
-\frac{\hbar^{2}}{2}\left(\frac{1}{m_{i}}+\frac{N-1}{m_{j}}\right)\left(\Psi_{0}, \Delta r_{j} \Psi_{0}\right) .
$$

Thus if we increase m_{i} at the same time decreasing the m_{i} so as to keep ($1 / m_{i}$)+ $(N-1) / m_{j}$ constant we have the relation

$$
\begin{equation*}
\left(\Psi_{0}, H_{i} \Psi_{0}\right)_{m_{i}>m}=\left(\Psi_{0}, H_{i} \Psi_{0}\right)_{m_{i}=m} . \tag{2}
\end{equation*}
$$

We introduce relative coordinates $\boldsymbol{\rho}_{1}, \rho_{2}, \ldots, \rho_{N}$ as follows. The particle masses are absorbed by a change of scale. Let $\boldsymbol{r}_{j}^{\prime}=m_{j}^{1 / 2} \boldsymbol{r}_{i}, j \neq i$; and $\boldsymbol{r}_{i}^{\prime}=m_{i}^{1 / 2} \boldsymbol{r}_{i}$. The transformation is

$$
\begin{equation*}
\boldsymbol{\rho}_{i}^{\prime}=\left(\frac{m_{i}}{M}\right)^{1 / 2} \boldsymbol{r}_{i}^{\prime}+\sum_{\substack{j=1 \\ j \neq i}}^{N}\left(\frac{m_{j}}{M}\right)^{1 / 2} \boldsymbol{r}_{j}^{\prime}, \tag{3a}
\end{equation*}
$$

centre-of-mass coordinate, and

$$
\begin{equation*}
\boldsymbol{\rho}_{j}^{\prime}=\left(\frac{m_{i}}{m_{i}+m_{j}}\right)^{1 / 2} \boldsymbol{r}_{j}^{\prime}-\left(\frac{m_{j}}{m_{i}+m_{j}}\right)^{1 / 2} \boldsymbol{r}_{i}^{\prime} \tag{3b}
\end{equation*}
$$

$j=1,2, \ldots, N ; j \neq i . M$ is the total mass, $M=m_{i}+(N-1) m_{j}$. Let $\rho_{i}^{\prime}=M^{1 / 2} \rho_{i}$ and $\rho_{i}^{\prime}=m_{j}^{1 / 2} \rho_{i}, j \neq i$. Then from (2) we have

$$
\begin{equation*}
\left(\Psi_{0}, H_{i} \Psi_{0}\right) \equiv\left(\Psi_{0}, H_{i}^{\prime} \Psi_{0}\right) \tag{4}
\end{equation*}
$$

where
$H_{i}^{\prime}=-\frac{\hbar^{2}}{2 M} \Delta \boldsymbol{\rho}_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{\hbar^{2}}{2 m_{j}} \Delta \boldsymbol{\rho}_{j}-\sum_{\substack{j<k=1 \\ j, k \neq i}}^{N} \frac{\hbar^{2}}{m_{i}+m_{j}} \nabla_{\boldsymbol{\rho}_{i}} \cdot \nabla_{\boldsymbol{\rho}_{k}}+\frac{N}{2} \sum_{\substack{i=1 \\ j \neq i}}^{N} V\left(\left(\frac{m_{i}+m_{j}}{m_{i}}\right)^{1 / 2} \rho_{j}\right)$.

It should be noted that ρ_{i} is the centre-of-mass coordinate and is orthogonal to all the $\boldsymbol{\rho}_{j}, j \neq i$. Initially we took Ψ_{0} to be translation invariant. Ψ_{0} can be expressed solely in terms of the $\rho_{i}, j \neq i$, when $m_{i}, m_{i} \neq m$. The only term in H_{i}^{\prime} which contains ρ_{i} is the kinetic energy term for the centre of mass. Thus from (4) for any $m_{i} \geqslant m$, with the m_{i} suitably adjusted, we have

$$
\begin{equation*}
\left(\Psi_{0}, H_{i}^{\prime} \Psi_{0}\right)=\left(\Psi_{0}, H_{i}^{\prime \prime} \Psi_{0}\right) \tag{5}
\end{equation*}
$$

where
$H_{i}^{\prime \prime}=\sum_{\substack{j=1 \\ i \neq i}}^{N}-\frac{\hbar^{2}}{2 m_{j}} \Delta \boldsymbol{\rho}_{j}-\sum_{\substack{i<k=1 \\ j, k \neq i}}^{N} \frac{\hbar^{2}}{m_{i}+m_{i}} \nabla_{\boldsymbol{\rho}_{j}} \cdot \nabla_{\boldsymbol{\rho}_{k}}+\frac{N}{2} \sum_{\substack{j=1 \\ j \neq i}}^{N} V\left(\left(\frac{m_{i}+m_{j}}{m_{i}}\right)^{1 / 2} \rho_{j}\right)$.
From (4) and (5) we have

$$
\begin{equation*}
\left(\Psi_{0}, H_{i} \Psi_{0}\right)=\left(\Psi_{0}, H_{i}^{\prime \prime} \Psi_{0}\right) \tag{7}
\end{equation*}
$$

thus (2) becomes

$$
\begin{equation*}
\left(\Psi_{0}, H_{i}^{\prime \prime} \Psi_{0}\right)_{m_{i}>m}=\left(\Psi_{0}, H_{i}^{\prime \prime} \Psi_{0}\right)_{m_{i}=m} \tag{8}
\end{equation*}
$$

Now let $m_{i} \rightarrow \infty$ on the left-hand side of equation (8) retaining the function Ψ_{0} and such that $\left(1 / m_{i}\right)+(N-1) / m_{j}$ remains constant. From ($3 a$) and ($3 b$) and adjacent relations $\boldsymbol{\rho}_{i} \rightarrow \boldsymbol{r}_{i}$ and $\boldsymbol{\rho}_{i} \rightarrow \boldsymbol{r}_{i}-\boldsymbol{r}_{i}, j \neq i$. But \boldsymbol{r}_{i} is the centre-of-mass coordinate of an infinitely massive system and therefore represents a fixed point. To emphasise this let $\boldsymbol{r}_{i}=\boldsymbol{a}_{i}$ (constant). We introduce orthogonal coordinates $\overline{\boldsymbol{\rho}}_{j}=\boldsymbol{\rho}_{i}+\boldsymbol{a}_{i}=\boldsymbol{r}_{j}, j \neq i$. In the limit $m_{j} \rightarrow m(N-1) / N$ and (8) becomes

$$
\begin{equation*}
\lim _{m_{i} \rightarrow \infty}\left(\Psi_{0}, H_{i}^{\prime \prime} \Psi_{0}\right)=\left(\Psi_{0}, H_{i}^{\prime \prime} \Psi_{0}\right)_{m_{i}=m} \tag{9}
\end{equation*}
$$

We have from (6), (7) and (9)

$$
\begin{equation*}
\left(\Psi_{0}, H_{i} \Psi_{0}\right)=\lim _{m_{i} \rightarrow \infty}\left(\Psi_{0}, H_{i}^{\prime \prime} \Psi_{0}\right)=\left(\Psi_{0}, \mathscr{H}_{i}\left(a_{i}\right) \Psi_{0}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathscr{H}_{i}\left(a_{i}\right)=\sum_{\substack{j=1 \\
j \neq i}}^{N}\left(-\frac{N}{N-1} \frac{\hbar^{2}}{2 m} \Delta \boldsymbol{r}_{j}+\frac{N}{2} V\left(\left|r_{j}-a_{i}\right|\right)\right)=\sum_{\substack{j=1 \\
i \neq i}}^{N} h_{j}\left(a_{i}\right) \\
& h_{i}\left(a_{i}\right)=-\frac{N}{N-1} \frac{\hbar^{2}}{2 m} \Delta r_{j}+\frac{N}{2} V\left(\left|r_{i}-a_{i}\right|\right) .
\end{aligned}
$$

Applying (10) to each term in (1) we replace $\left(\Psi_{0}, H_{i} \Psi_{0}\right)$ by $\left(\Psi_{0}, \mathscr{H}_{i}\left(a_{i}\right) \Psi_{0}\right)$, $i=1,2, \ldots, N$, which gives

$$
\begin{aligned}
E_{0}=\frac{1}{N} \sum_{i=1 .}^{N} & \left(\Psi_{0}, \mathscr{H}_{i}\left(a_{i}\right) \Psi_{0}\right) \\
& =\frac{1}{N}\left(\Psi_{0},\left(\sum_{j \neq 1} h_{j}\left(a_{1}\right)+\sum_{j \neq 2} h_{j}\left(a_{2}\right)+\ldots+\sum_{i \neq N} h_{i}\left(a_{N}\right)\right) \Psi_{0}\right) .
\end{aligned}
$$

Now since Ψ_{0} is translation invariant

$$
\left(\Psi_{0}, h_{i}(\boldsymbol{a}) \Psi_{0}\right)=\left(\Psi_{0}, h_{i}(\boldsymbol{b}) \Psi_{0}\right)
$$

when $\boldsymbol{a} \neq \boldsymbol{b}$. In particular

$$
\left(\Psi_{o}, h_{i}\left(\boldsymbol{a}_{i}\right) \Psi_{0}\right)=\left(\Psi_{0}, h_{j}(\mathbf{0}) \Psi_{0}\right), \quad i=1,2, \ldots, N ; j \neq i
$$

Let $h_{i}(\mathbf{0})=h_{i}$. We may then write

$$
E_{0}=\frac{1}{N}\left(\Psi_{0},\left(\sum_{j \neq 1} h_{j}+\sum_{j \neq 2} h_{j}+\ldots+\sum_{j \neq N} h_{j}\right) \Psi_{0}\right)=\left(\Psi_{0},\left(\frac{N-1}{N} \sum_{j=1}^{N} h_{i}\right) \Psi_{0}\right)
$$

since Ψ_{0} is antisymmetric in $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{\mathrm{N}}$. Thus

$$
\begin{equation*}
E_{0}=\left(\Psi_{0}, H_{\mathrm{s}} \Psi_{0}\right) \tag{11}
\end{equation*}
$$

where

$$
H_{\mathrm{s}}=\frac{N-1}{N} \sum_{i=1}^{N} h_{i}=\sum_{i=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \Delta r_{i}+\frac{N-1}{2} V\left(r_{i}\right)\right)
$$

and

$$
h_{i}=-\frac{N}{N-1} \frac{\hbar^{2}}{2 m} \Delta r_{i}+\frac{N}{2} V\left(r_{i}\right) .
$$

Ψ_{0} will not in general be an eigenstate of H_{5}. We minimise with respect to normalised functions obeying the usual boundary conditions of quantum mechanics and antisymmetric with respect to the interchange of any pair of particles $1,2, \ldots, N$. Equation (11) becomes an inequality

$$
\begin{equation*}
E_{0} \geqslant\left(\Phi_{\mathrm{s}}, H_{\mathrm{s}} \Phi_{\mathrm{s}}\right) \tag{12}
\end{equation*}
$$

where Φ_{s} is the lowest eigenstate of H_{s} subject to the above constraints ${ }^{\dagger}$, an antisymmetrised product (Slater determinant) formed from the first N eigenstates of h_{i}. Let $h_{i} \phi_{n}\left(\boldsymbol{r}_{i}\right)=\epsilon_{n} \phi_{n}\left(\boldsymbol{r}_{i}\right)$, we take ϕ_{n} to be normalised to unity. The inequality (12) becomes

$$
E_{0} \geqslant \frac{N-1}{N} \sum_{i=0}^{N-1} \epsilon_{i}=S .
$$

We have an N-particle shell model retaining antisymmetry in all N particles, which we call the shrimp (symmetrised heavy reduced independent many particle) model.

Another lower-bound shell model retaining antisymmetry in only $N-1$ particles may be obtained as follows. From (1), (2) and (10) we have that

$$
\begin{align*}
E_{0}=\left(\Psi_{0}, H_{1} \Psi_{0}\right)_{m_{1}=m}=\left(\Psi_{0}, H_{1} \Psi_{0}\right)_{m_{1}>m} \\
=\left(\Psi_{0}, \mathscr{H}_{1}\left(\boldsymbol{a}_{1}\right) \Psi_{0}\right)=\left(\Psi_{0}, \mathscr{H}_{1} \Psi_{0}\right) \tag{13}
\end{align*}
$$

where $\mathscr{H}_{i}=\mathscr{H}_{i}(\mathbf{0})$. We minimise the expectation value of \mathscr{H}_{1} with respect to functions of class M defined as follows. Class M consists of those functions which satisfy the conditions of class L except that the restriction of antisymmetry with respect to the interchange of particle 1 with any of the particles $2,3, \ldots, N$ is dropped ($L \subset M$). Thus

$$
E_{0} \geqslant\left(\Phi_{\mathrm{R}}\left(\overline{\boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{N}}\right), \mathscr{H}_{1} \Phi_{\mathrm{R}}\left(\overline{\boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{N}}\right)\right)=\mathscr{E}
$$

[^0]where Φ_{R} is the ground state of \mathscr{H}_{1} in class M, an antisymmetrised product formed from the first $N-1$ eigenstates of h_{i} giving a lower bound
$$
\mathscr{E}=\epsilon_{0}+\epsilon_{1}+\ldots+\epsilon_{N-2} .
$$

We have a shell system of $N-1$ independent particles interacting with a fixed centre of force which we call the RIP (reduced independent particle) model.

Lower-bound models were originally obtained by the procedure of letting $m_{i} \rightarrow \infty$ keeping the $m_{j}=m$ (constant) (see Carr and Post 1968, 1971). The relation (10) is then an inequality

$$
\begin{aligned}
\left(\Psi_{0}, H_{i} \Psi_{0}\right) & >\lim _{m_{i} \rightarrow \infty}\left(\Psi_{0}, H_{i}^{\prime \prime} \Psi_{0}\right) \\
& =\left(\Psi_{0}, \mathscr{H}_{i}\left(\boldsymbol{a}_{i}\right) \Psi_{0}\right)=\left(\Psi_{0}, \mathscr{H}_{i} \Psi_{0}\right)
\end{aligned}
$$

giving lower-bound shell models for which

$$
h_{i}=-\frac{\hbar^{2}}{2 m} \Delta \boldsymbol{r}_{i}+\frac{N}{2} V\left(r_{i}\right) .
$$

We call the model corresponding to the sHRIMP model when the m_{j} are kept constant in the limiting procedure the SHIP (symmetrised heavy independent particle) model and that corresponding to the RIP model the HIP (heavy independent particle) model.

3. Conclusion

Comparing the RIP with the shrimp model we see that the RIP model has the same energy levels apart from a factor $N /(N-1)$ but one less particle. Thus $S>\mathscr{E}$ always. However, having one less particle gives the RIP model an advantage in the discussion of angular momenta. When constructing the allowed total angular momentum values there is one less angular momentum vector in the sum which leads to a restricted set of values (Carr and Post 1971).

For the HIP and SHIP models h_{i} has no factor $N /(N-1)$ in the kinetic energy which leads to weaker lower bounds compared with RIP and shrimp respectively. Thus HIP and sHIP are superseded.

Acknowledgments

The author would like to thank Professor H R Post and Mr G Horton for many useful discussions, help and encouragement.

References

[^0]: \dagger We assume such an eigenstate exists.

